Clocks in Gravitational Field
\setlength{\unitlength}{1mm}
\begin{picture}(120,100)(-8,0)
\put(35,5){\vector(1,0){50}}
\put(88,5){\makebox(0,0){$h$}}
\put(40,2){\makebox(0,0){$h_A$}}
\put(70,2){\makebox(0,0){$h_B$}}
\multiput(40,5)(30,0){2}{\line(0,1){90}}
\multiput(40,5)(0,10){7}{\line(1,1){30}}
\multiput(40,35)(6,0){5}{\line(1,0){3}}
\multiput(40,65)(6,0){5}{\line(1,0){3}}
\multiput(40,5)(0,30){3}{\circle*{2}}
\multiput(70,35)(0,15){3}{\circle*{2}}
\multiput(40,35)(0,30){2}{\line(1,-1){30}}
\multiput(39.75,15)(.25,0){3}{\line(0,1){10}}
\multiput(39,15)(0,10){2}{\line(1,0){2}}
\multiput(69.75,55)(.25,0){3}{\line(0,1){10}}
\multiput(69.75,40)(.25,0){3}{\line(0,1){5}}
\multiput(69,35)(0,5){7}{\line(1,0){2}}
\put(97,60){\makebox(0,0){$
\left\}\rule[-4mm]{0mm}{8mm}\right.\leftarrow
\Delta\tau = 2T_{Cs}\mbox{(lokale Uhr)}
$}}
\put(98,50){\makebox(0,0){$\leftarrow$ \emph{Explosion der 2. Uhr}}}
\put(96,42.5){\makebox(0,0){$\left\}\rule[-1.5mm]{0mm}{3mm}\right.
\hskip1mm\leftarrow\Delta\tau = T_{Cs}\mbox{(lokale Uhr)}$}}
\put(25,20){\makebox(0,0){$\Delta\tau = T_{Cs}\rightarrow
\left\{\rule[-4mm]{0mm}{8mm}\right.$}} %}
\put(38,8){\makebox(0,0){1}}
\put(17,35){\makebox(0,0){ \emph{Start der 1. Uhr} $\rightarrow$ 2$A$}}
\put(13,65){\makebox(0,0)
{\emph{Explosion der 1. Uhr} $\rightarrow$ 3$A$}}
\put(93,35){\makebox(0,0)
{ 2$B \leftarrow$ \emph{Start der 2. Uhr}}}
\put(74,68){\makebox(0,0){$3B$}}
\end{picture}